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Methods for the solution of three-dimensional crystal structures from the three-dimensional Patterson 
function have been further developed by use of (a) the Symmetry Minimum Function which is 
based upon all symmetry interactions (e.g. :Harker lines and planes), (b) a simultaneous high order 
superposition function which makes use of all the symmetry of the space group, and (c) a combined 
high order superposition function in which the Symmetry Minimum Function is included to reduce 
the number of spurious peaks. These functions introduce a more direct method for the analysis of 
somewhat more complex structures than methods which have previously been described. 

Introduction 

The three-  dimensional Pa t t e r son  function* P ( r ) ,  
which m a y  be calculated directly from the observed 
in tegra ted X - r a y  diffraction intensities IFh~tl e, has 
formed the s tar t ing point  for the elucidation of m a n y  
complex crystal  s tructures.  The function P ( r )  m a y  
be thought  of as a very  large number  of images of 
the  three-dimensional  atomic structure.  I f  there are 
/V a toms in the s t ructure  thcre are N - 1  vectors 
from any  given a tom to all other  atoms. This a r r ay  
of N -  1 vectors is said to be the image of the s t ructure  
as seen from a tom N. Since P ( r )  is the a r r ay  of all 
such vectors obtained by s tar t ing from each a tom 
in turn,  the problem is to sort out one image of the  
s t ructure  from P( r ) .  In  a sense, m a n y  early solutions 
of crystal  s t ructures  were based implicitly upon 
this type  of analysis.  The fur ther  development  of 
this method  into a formal procedure by  Buerger  (1951), 
and by  m a n y  others as summarized in a recent review 
and critique of the method (Fridrichsons & Mathieson, 
1962), has proved of great  value in the elucidation 
of relat ively complex structures.  

I n  this formal procedure the function P ( r )  is dis- 
placed by  two vectors r l  and re, whose difference 
r l - r 2  represents,  hopefully, an interatomic vector. 
These two functions, P ( r - r l )  and  P ( r - r ~ )  are 
superimposed in three dimensions to yield a new 
three-dimensional function S(r) .  This resulting func- 
tion, S(r) ,  is an intensification of the  image of the 
s t ructure  which is related to the  interact ion vector  
r l - r 2 .  I f  the displacement vectors, r l  and re, are 
chosen as correct atomic positions, then  the origin 
of S(r)  will be conveniently the  same as t h a t  of the  

* The variable name of the position of a point in :Patterson 
function space is arbitrary. Here we use r instead of the more 
usual designation u in order to avoid confusion later in the 
interpretation of equations (8) through (20). In these equations 
r denotes the same arbitrary point in the several different 
functions involved; e.g. P(r--r i) ,  S(r), ~(r), SMF(r) and Is(r). 

crystal  electron densi ty  function Q(r). Fu r the r  inten- 
sification of the s t ructure  m a y  be obtained if the  
process is repeated  with more displacement  vectors 
r8, 1"4, elc. 

In  the procedures described here, we show tha t  by  
selecting trial  atomic positions as displacement vectors 
(Kraut ,  1961) a large number  of displaced functions 
P ( r - r ~ )  can be simultaneously superimposed. We 
also show the impor tance  of the use of all a toms 
related by s y m m e t r y  t (other t han  latt ice t ranslat ions  
or centering) in these superpositions. 

We shall describe a S y m m e t r y  Minimum Funct ion,  
SMF(r) ,  f rom which trial  a toms can easily be selected. 
Also, we shall show t h a t  this SMF(r)  can be used 
to eliminate much of the false detail contained in 
the superposit ion function. The SMF(r)  is a combina- 
tion of all of the  informat ion about  a tom positions 
t h a t  is contained in the s y m m e t r y  regions of the  
Pa t te r son  funct ion (i.e. Harker  lines, planes, and,  
if present,  inversion peaks and improper  ro ta t ion  
peaks). The m a x i m a  in the  SMF(r)  are the  only 
possible atomic positions which satisfy the s y m m e t r y  
regions of P ( r ) ;  thus,  SMF(r)  can be used to select 
tr ial  atoms,  and,  when included in the  S(r)  function, 
it will remove spurious a toms which do not  sat isfy 
all of the s y m m e t r y  regions of P ( r ) .  

S y m m e t r y  M i n i m u m  Function 

The analysis of the  s y m m e t r y  regions for possible 
a toms in the  unit  cell becomes very  difficult as the  

~f Since the development and application of these functions 
we became aware that W. C. Hamilton, A. Mighell & R.A. 
Jacobson had also developed methods which have some 
features similar to those described here. See Abstracts, 
American Crystallographic Association, Cambridge, Massa- 
chusetts, and Mighell & Jaeobson (1963). A preliminary 
account of the present paper was also presented at this same 
meeting of the American Crystallographic Association. 
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number of heavy atoms increases and the many 
maxima overlap with themselves and with the multi- 
tudinous maxima due to general interatomic vectors. 
However, if all of the information in the several 
symmetry regions is systematically combined, the 
usefulness of these regions can be greatly extended• 

First for each symmetry operation the corresponding 
symmetry region is transformed into a function 
whose maxima are the only possible atomic positions 
that  are consistent with the particular symmetry 
element. A symmetry region is a Harker line, plane 
or, in the case of a crystal with inversion or improper 
rotation symmetry, the whole three-dimensional space 
of the Patterson function. Using gs to denote one of 
the symmetry operations of the space group, we can 
write the transformed function as 

I s (r )=P(r-gsr) /ms  (1) 

where r - g s r  is the Patterson vector created by the 
symmetry element g~. For scaling, the P ( r -g~r )  is 
divided by ms, the multiplicity of the symmetry 
interaction. For Harker planes, due to rotational 
symmetry, this transformation has been described in 
detail by Buerger, who calls it the implication (Is) 
transformation (Buerger, 1946, 1959). Any density in 
the Is function can be interpreted as being greater 
than or equal to any electron density ~(r) at the same 
point on an appropriate scale, that  is 

L(r) ~ ~(r). (2) 

A single Is function is of limited usefulness for the 
location of trial atomic positions because (1) not all 
of the coordinates are generally specified, except for 
Is(r) arising from inversion or improper rotation, 
(2) generally, when two or more trial atoms are 
involved, there are ambiguities in the choice of origin 
and/or orientation of the axis, (3) maxima due to 
other symmetry elements (satellite peaks) may occur 
in the same region of P(r), (4) general maxima occur 
accidentally, but frequently, in the symmetry region, 
(non-Harker background), and (5) there is a lack of 
resolution due to overlap of the maxima. In general, 
then, Is will have more maxima than the crystal 
electron density function, and the interpretation of Is 
therefore can be difficult. 

These difficulties in the Is can be substantially 
reduced by taking the minimum function of all of 
the I8 functions, including those from reflection ~nd, 
particularly, from inversion and improper rotation 
symmetry. We have named this function the Sym- 
metry Minimum Function (SMF) (Simpson, Folting, 
Dobrott & Lipscomb, 1963), defined by the equation 

p 
SMF(x, y, z) = M Is(x, y,  z), (3) 

where p is the number of unique Is functions. The 
minimum operator M denotes the operation of choos- 
ing at each point, x, y, z or r, the lowest value among 

the n functions I~. The SMF then contains only the 
maxima which are common to all of the Is. Thus, 
SMF conveniently summarizes all of the atomic 
positional information contained in the symmetry 
regions of the Patterson function. 

Since each Is(x, y, z) is greater than or equal to 
o(x, y, z), it follows directly that  SMF(x, y, z) will 
be greater than or equal to ~(r) as well. If a spurious 
or satellite peak which is present in one Is function 
is not present in all other Is, then this peak will not 
be present in the SMF. Thus false peaks arising from 
general interactions are reduced in the SMF as the 
number of Is functions increases• 

The ambiguities which are introduced by satellite 
peaks which arise from powers and products of 
symmetry operations are also reduced in SMF since 
it is based on all of the unique Is functions. For 
example, Buerger (1946, 1959) has pointed out for 
the symmetries 62, 63, and 64 that  the satellite peaks 
are different for the different powers of the operations 
and that  the peaks which the corresponding Is have 
necessarily in common are the true locations of the 
atoms. Since SMF contains only the common peaks 
of all the Is functions, it follows that  the SMF will 
have peaks, in this case, only at the true locations of 
the atoms• Similarly, for other symmetries, the 
common peaks of all of the Is functions, i.e. SMF, 
will in general have a minimum of ambiguities due 
to satellite peaks. For example, the ambiguities due 
to satellite peaks for the symmetries 4 and 6 are 
not present in SMF (see Fig. l) since the satellite 
peaks in the several implication functions for the 
powers of the rotation are different from each other, 
even though the symmetry region of P(r) is the same. 
Fig. 1 illustrates the usefulness of including all of 
the Is functions corresponding to each symmetry 
operation even when more than one symmetry 
operation leads to vectors in the same region of P(r). 
Satellite peaks which are common to all Is represent 
possible atomic positions and are present in SMF. 
Examples are the satellite peaks due to reflection 
interactions occurring in special positions of the same 

e (*',Y) P(u,v,o) /s(z,y) SMF (',x',y) 
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Fig. ]. Derivat ion of SMF for the symmetries 4 and 6. SMF, 
the minimum function of all the Is(r), contains only the 
maxima common to all Is(r). All the Is(r) are used even 
though the symmetry regions of the Patterson function 
are the same for several symmetry operations• 
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plane of P(r )  as rotat ion interactions. True satellite 
peaks not  only lie at  special positions but  are also 
related to general peaks. On the other hand,  for 
apparent  satellite peaks there will not be any  cor- 
responding general peak. 

In  order to i l lustrate the construction of SMF more 
explicit ly,  let us consider the space group P21/c, 
which has symmet ry  regions in the Pat terson function 
at  0, ½-2y ,  ½; - 2 x ,  ½, - ½ - 2 z ;  and 2x, 2y, 2z wi thin  
the asymmetr ic  uni t  of x from 0 to 1, y from 0 to ½, 
and z from 0 to ½. The Is functions are 

which makes use of the general in tera tomic vectors, 
can be employed. This more powerful funct ion is the 
image seeking funct ion and is defined as 

S ( r ) = F { P ( r - r l ) ,  P ( r - r 2 ) ,  . . . ,  P ( r - r n ) ,  SMF(r)} 

(8) 

where 2' can be one of several types of operator 
described below, P ( r - r i )  is the Pat terson funct ion 
displaced by  the vector ri,  and SMF(r) is the sym- 
met ry  m i n i m u m  function. Three simple forms of 
the function are the addit ion funct ion 

Ic (x, y, z) = ½P(0, ½-2y ,  ½), 

I21(x, y, z) = ½P( -  2x, ½, ½ -  2z),  

I i  (x, y, z) = P(2x, 2y, 2z) . 
Then 

SMF(x, y, z )=  M(½P(O, ½-  2y, ½), 
½ P ( - 2 x ,  ½, ½-2z) ,  P(2x, 2y, 2z)}. 

n 

S a ( r )  ---- SMF(r) + ~ P ( r -  r~), (9) 
i = 1  

(4) the product  funct ion 

Sp(r) = SMF(r) • ~.' P ( r -  r~), (10) 
i = l  

(5) and the m i n i m u m  funct ion 

This example* i l lustrates the use of reflection sym- 
met ry  and inversion symmet ry  as well as rotat ional  
symmetry .  Some of the ambigui t ies  tha t  arise in Is 
and  SMF are also il lustrated. First ,  Ic gives no in- 
format ion about  x or z, and I21 gives no information 
about  y. I i  gives information about  all coordinates, 
as does SMF which combines the information of all 
three Is functions. There is also an eightfold ambigu i ty  
in the choice of origin: the result  from the use of all 
three Is functions is 

I~(x, y, z) = I~(x + ½, y, z) = I~(x, y +  x2, z) 
= I~(x, y, z+ 1) = Is(x+½, y+½, z) 
= I~(x÷½, y , z +  1-) = I~(x,y÷½, z+½) 

= I~(x+½, Y+½, z+½).  (6) 
Thus 

SMF(x, y, z )=  SMF(x + ½, y, z )=  SMF(x, y +  1, z), 
etc. (7) 

This ambigu i ty  must  be dealt  with when more than  
one unique atom is to be chosen. The image seeking 
functions which are described in the next  section 
can be based on a single unique trial  a tom and used 
to resolve the ambigui ty .  

H i g h  o r d e r  i m a g e  s e e k i n g  

The SMF provides a systematic  way of choosing tr ial  
atoms, bu t  because of ambiguit ies  and overlap of 
maxima,  i t  generally is inadequate  by  itself to elucidate 
a complicated crystal  structure. The l imitat ions of 
SMF arise in par t  because it  contains only informat ion 
from the symmet ry  regions of P(r) .  Once one or more 
tr ial  a toms are selected, a more powerful function, 

* Because of the equivalent positions, there are, in this 
example, 31 other points related to every x, y, z in the unit 
cell of the SMF. In general, 4 of these points will be retained 
in the final structure and the remaining 28 should disappear. 
Thus one point out of 8 in the asymmetric unit is retained. 

Sm(r) = M [ w l P ( r -  rl), w 2 P ( r -  r2), . . . ,  
w n P ( r - r n ) ,  w~SMF(r)]. (11) 

The normalizat ion factor wi (discussed later) could 
be introduced into any  one of these three types of 
function. The m i n i m u m  funct ion is the nearest  
approximat ion  to the electron densi ty of the structure, 
and seems to be the most powerful of these functions 
for the discovery of good trial  structures. Although 
the addit ion function is the weakest, it  is the easiest 
to calculate analy t ica l ly  (ignoring SMF(r)) as a Fourier  
synthesis,  and it has been found to yield good results 
(Fridrichsons & Mathieson, 1962). 

The superposition or displacement  vectors r are 
most convenient ly chosen as the trial  atomic positions 
in the crystal  uni t  cell (Kraut,  1961). This choice 
makes the origin of S(r) the same as tha t  of Q(r) 
and SMF(r). Thus, s imultaneous superpositions are 
allowed on m a n y  trial  atoms, and the SMF(r) is 
easily included in the superposition. The Pat terson 
funct ion of the crystal  structure shown in Fig. 2 is 

Fig. 2. A structure in crystal space Q(r) having atoms 
at the ends of vectors rl, r 2, r a and r 4. 
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given in Fig. 3, and displaced by rz, r2, and r3 respec- 
t ively in Figs. 4, 5, and 6. Note that  the superposition 
function (:Fig. 7) has peaks at the positions of all 
atoms, including those not chosen for the displacement 
vectors. If this superposition is the minimum function, 
it will have only maxima common to all of the dis- 
placed Patterson functions, namely at all of the atomic 
positions. Since the crystal structure in :Fig. 2 is 
non-symmetric, no SMF is included in the super- 
position. 
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Fig. 5. The displaced Pa t t e r son  funct ion P ( r - r e )  , the vector  
map  of Fig. 3 shif ted by the vector  r 2 of a tom 2. 
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Spurious peaks will also generally occur in S(r) 
owing to overlap of the interatomic vectors in P(r) .  
Also, it is rather well known that  for certain choices 
of the trial atoms, especially for a small number of 
trial atoms, S(r) may be centrosymmetric, even if 
~(r) is not. :For example, if only two P ( r - r i ) ,  say 
P ( r - r l )  and P ( r - r ~ )  in the above example, are 
used the resulting S(r) contains a false center of 

Fig. 3. The Pa t t e r son  map  of in tera tomic  dis tance vectors 
obta ined  from a toms  of Fig. 2. 
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Fig. 4. The displaced Pa t t e r son  funct ion  P ( r - r l ) ,  the  vector  Fig. 6. The displaced Pa t t e r son  funct ion  P ( r - - r 3 )  , the  vec tor  
map  of Fig. 3 shif ted by  the vector  r z of a tom 1. map  of Fig. 3 shif ted by  the  vector  r 3 of a tom 3. 
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Fig. 8. The superposition function obtained from only P ( r -  rl) 
Fig. 7. The superposition function obtained from the displaced and P(r--r~) (Figs. 4 and 5} containing a false center of 

Patterson functions P( r - - r l ) ,  P(r--r2)  and P(r- - rs)  (Figs. symmetry half way between r I and r 2. 
4, 5 and 6). The sum function, the product function, or 
the minimum function gives peaks at the original set of Sin(r) M{P(r-rl) /Z1,  P(r-r2)/Z2, 
atoms shown in Fig. 2, and these peaks are correctly placed . . . .  , 
relative to the crystal coordinate system. Note, the minimum P ( r -  rn)/Zn, SMF(r)/Z~} > y~( r ) .  (14) 
function gives the least false detail. 

The inclusion of SMF in the superposition insures 
symmet ry  (Fig. 8) which is destroyed by  including tha t  each m a x i m u m  in Sin(r) is consistent with all of 
three trial  atoms in S ( r ) ( F i g .  7). the symmet ry  regions of the Pat terson function. 

An impor tan t  property of each displaced Pat terson Thus, trial  atoms located in Sin(r) need not be checked 
funct ion P ( r - r d  is tha t  it  includes max ima  at the against  the symmet ry  regions of P(r) .  If for each 
atomic position r j  with heights approximate ly  pro- unique trial  a tom which is chosen, all of its symmet ry  
portional to Z~Zj, expressed in the inequal i ty  related atoms* are also included in the superposition, 

P(r-r~)/(Z d > 7~(r ) ,  (12) the resulting m i n i m u m  function has max ima  at all 
- of the possible atomic positions which are simul- 

where the scaling factors are the atomic number  Z~ taneously consistent with (1) the crystal  space group 
of the trial  atom, and a geometrical factor :F, which symmetry ,  (2) the presence of the unique trial atoms, 
depends on the unit-cell volume and on the shape and (3) the Pat terson function, i.e. the set of inten- 
of a tom i. Generally, y is taken as approximate ly  sities. 
constant  for all atoms, but  i t  is larger for sharp atoms From equation (14) we see tha t  the normalizat ion 
than  for diffuse atoms. The relative sharpness of the factor u,~ (cf. equation (11)) for P ( r - r d  is proportional 
atoms can be taken into account by  replacing Z~ by to the reciprocal of the atomic number  Zi, or of the 
an effective atomic number  Z;, which is larger t han  effective atomic number  if the degree of sharpness of 
Z~ for sharp atoms and smaller for diffuse atoms, the atoms is taken into account. If all of the trial 

We now write the inequal i ty  for SMF as atoms for an Sm have equal or near ly  equal atomic 

(1/ZI)SMF(r) >_ 70( r ) ,  (13) * I t  is c lea r ly  n o t  n e c e s s a r y  to  inc lude  c e n t e r i n g  o p e r a t i o n s  
s ince a s u p e r p o s i t i o n  f u n c t i o n  for  a c e n t e r e d  c ry s t a l  will 

where Zz is the atomic number  of the l ightest  trial  have the centering symmetry irrespective of the choice of 
atoms. Then Sm becomes trial atoms. 

A C 18 I 12 
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numbers,  then  all normalizat ion factors can be set 
to unity.  

The selection of the tr ial  atomic positions as the 
displacement vectors is not  unique. Any  other set r~ 
related to r~ by  a constant  t ranslat ion t may  be 
used, provided tha t  

r ' /= r i  -- t (15) 

for all ri,  and tha t  S1VIF(r+t) is used instead of 
SMF(r). The m i n i m u m  function be~'omes 

Sm(r + t ) = M { P ( r  + t -  rl)/(Z1), P ( r  + t -  r2)/(Ze), . . . ,  

P ( r + t - r ~ ) / ( Z ~ )  SMF(r+t) / (Z~))  >_ 7 ~ ( r + t )  (16) 

which is s imply  Sin(r) shifted by  t. The same shift 
also occurs for the other superposition functions, 
S~ and Sp. In  the past, a set of r'~ has usually been 
chosen such tha t  r~ = 0. Then the other r'~ are positions 
of certain vectors in Pat terson space. If, further,  
the actual  structure is centrosymmetric ,  the single 
interact ion at (2x, 2y, 2z)trial has been chosen as r~. 
However, the choice rt  = (x, y, z)tr~al and re = 
( - x , - y , - Z ) t r i a l  is more convenient because then  
(1) the origin of each S(r) based on different trial  
atoms is the same, (2) the ambiguit ies in correctly 
selecting the vectors in P(r)  are avoided, and (3) the 
SMF can easily be included so tha t  false peaks which 
do not agree with the symmet ry  regions are largely 
eliminated. 

The image seeking method employing SMF is useful 
when heavy atoms are present, but  even more useful 
when the heaviest  atoms are present in very  large 
number.  We discuss these applications as the heavy 
atom case and as the equal a tom case in the next  
section. 

A p p l i c a t i o n  

In  a single computation,  the SMF yields an exhaust ive 
a r ray  of all of the probable atomic positions tha t  
can be obtained from the Pat terson funct ion without  
any  assumptions about  the molecular geometry. 
Any  m a x i m u m  would be a reasonable choice for a trial  
a tom;  however, one would normal ly  choose peaks 
of the appropriate height  or use some known 
geometrical aspect as a criterion. Once a tr ial  a tom 
has been chosen, a high order superposition function, 
using tha t  atomic vector and all of its symmet ry  
related vectors, is computed and compared to the 
SMF on the computer. In  most cases, the false max ima  
can be el iminated by comparison o~ various super- 
position functions based upon different unique trial 
a tom choices. This is the general method to be fol- 
lowed in either the heavy  atom case or the equal 
a tom case. 

The heavy atom case 
If the heavy atom, which is usual ly located easily 

by  inspection of SMF, does not dominate  the phases 
of the Fh~z's well enough for a recognizable structure 
to emerge from a Fourier transform, this a tom is 

used as the basis for a superposition function. When  
a small  number  of heavy atoms are present, their  
positions are generally known very well, and hence 
superposition functions which are based on their  
positions can be used with a high degree of colffidence 
for the location of the l ighter atoms. Fur ther  super- 
positions on both the heavy and l ight atoms, as they  
become located with reasonable certainty,  will then 
usual ly be useful. If  SMF is included in the super- 
position function, its normalizat ion factor w~ is chosen 
to be inversely proportional to the atomic n u m b e r  
of the lightest tr ial  atom. 

The equal atom case 
This analysis also starts with a carefully computed 

SMF. Suppose tha t  one has located several possible 
positions for a number  of unique atoms. Then the  
several superposition functions are computed sep- 
arately:  in each superposition function, an  atom, 
all of its symmet ry  related atoms, and the SMF are 
used, whether or not the peaks in Pat terson space 
are resolved. Then the separate superpositions are 
compared in order to el iminate false m a x i m a  and 
incorrect choices of atoms. If an insufficient number  
of atoms is found with confidence from this analysis  
of the init ial  superposition functions, then  super- 
positions based on further  trial  choices of atoms are 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 9. Three unique points (connected by a triangle) expanded 
to the repeat unit of plane group Ping. 
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Fig. 10. The Pat terson function of the example in Fig. 6. 
The shaded circles represent by their increasing size one 
to four overlapping interactions. The origin has been 
reduced to a single interaction. 
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Fig. 11. The SMF obtained from the Pat terson function 

(Fig. 10) using the plane group symmetry .  Centers of rings 
are the only allowed positions. All ambiguities are shown. 
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Fig. 14. Resultant superposition of SMF(r), P ( r - r l )  and 
P( r - r2)  (Figs. l l ,  12 and 13). Only complete solid circular 
cores with a concentric ring remain as probable positions. 
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Fig. 12. The Pat terson function displaced by the vector r 1. 
The origin of P ( r - - r l )  is shown by the crossing solid lines. 
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Fig. 13. The Pat terson function displaced by the vector 
r 9  = - -  r 1 .  

computed. Alternat ively,  or subsequently,  one m a y  
then  go to higher order s imultaneous superpositions. 

Figs. 9-16 i l lustrate the power of the two m i n i m u m  
functions when combined. Three unique points 
(connected by  a triangle) and their  symmet ry  related 
points using plane group Ping are shown in Fig. 9. 
The Pat terson funct ion for this two-dimensional 
a r rangement  is shown in Fig. 10. The SMF obtained 
from the Pat terson funct ion is shown in Fig. 11. 
The Pat terson functions with the origin shifted by  
one trial  vector and its vector related by the twofold 
axis are shown in Figs. 12 and 13, respectively. For  

S 
Fig. 15. Resul tant  higher order superposition of SMF(r), 

P ( r - - r l ) ,  P ( r - - r2 ) ,  P ( r - - r s )  and P( r - - r4) .  Only the peaks 
common to all P ( r - - r l )  are shown. These peaks, common 
to SMF as well, are just the true structures (Fig. 9). 

r ~  . . . . . . .  

r~ 

@ • 

Fig. 16. Resultant superposition of SMF(r), P(r--r l ' ) ,  
P(r-r2"), P(r--rs '  ) and P(r--r4" ). Only the peaks com- 
mon to all P(r--ri)  are shown including two false peaks 
(uncircled) eliminated only by SMF. 

i l lustrat ion purposes, upper and lower hemicircles 
are used to represent m a x i m a  in these displaced 
Pat terson functions. Fig. 14 is the result ing m i n i m u m  
funct ion of Figs. 11, 12, and  13. The only m a x i m a  
which remain  val id in this diagram have a solid core 
with the concentric ring of the SMF. All half circular 
cores are e l iminated by  vector superposition and  
complete cores without  the concentric ring are 
e l iminated by  the SMF. In  the result ing m i n i m u m  
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function (Fig. 14), which has only the twofold sym- 
metry  of the basis trial points, only the true triangle 
and two false points remain. In the higher order 
minimum function, (Fig. 15), which is based on all 
of the s y m m e t r y  related atoms and which has the 
full Ping symmetry,  these two false points are 
eliminated, leaving only the true triangle. The dis- 
placement vectors were chosen so that  the rotation 
peak at 2 r = r ~ - r 2  is unresolved from two general 
interactions. This choice emphasizes that  the com- 
bination of these two functions is more powerful than 
vector superpositions alone. 

This example also illustrates the usefulness of 
including all of the symmetry related positions in the 
superposition. The higher order superposition function 
has less false detail than the lower order function, 
though it is based on the same number of unique 
trial points. I t  contains only maxima which are 
consistent with (1) the plane group symmetry,  (2) the 
presence of the unique trial point, and (3) the Patterson 
function. In this example, the minimum function 
arising from the set of four equivalent points and 
SMF has only maxima at the true positions (Fig. 15). 
Accidentally. in this particular case, the same result 
would be obtained using only the four P ( r - r ~ )  
in the superposition. Generally this is not the case; 
for example, the minimum function based on another 
correct trial point and all of its symmetry related 
points, shown in Fig. 16, has false maxima (uncircled 
solid circles) which are eliminated only by SMF. 

Discuss ion  

These methods have been applied successfully in the 
solutions of several structures. Gibberellic acid 
(Hartsuck & Lipscomb, 1963) and BlsH2~ (Simpson & 
Lipscomb, 1963) are examples of the use of only the 
high order image seeking function. Both the heavy 
atom case and the equal atom case are represented 
by the above two examples. Both studies were com- 
pleted before the evolution of SMF, which we believe 
would have greatly facilitated the analysis of their 
respective Patterson functions. The solution of the 
i-BlsH2~. (Simpson, Folting, Dobrott  & Lipscomb, 
1963) crystal structure was the first in which both the 
SMF and the high order image seeking function were 
employed. The relatively simpler B20H16 (Dobrott, 
Friedman ~ Lipsc0mb, 1964) structure, which had 
a most probable two-dimensional orientation deter- 
mined by other means, was found in the SMF without 
any further superpositions. 

The SMF does have several important limitations. 
(1) The ambiguity of origin for a unique peak is 
generally still present. For example, in the space 
group P2~/c the ambiguities of a choice of x, y, z 
are eightfold since the points x, y, z; ½+x, y, z; 

1_~ ; ~-~t-z" ~ +X, ~+y ,  Z" ~+X, y, ~+Z" x, ~ y , z  x , y ,  ~z , , 
1+ x, ½ + y, ½ + z; and ½ + x, ~ y, ½ + z are not related by 

the space group symmetry,  but  give exactly the same 

set of Patterson vectors between the symmetry  
related points. This ambiguity must be taken into 
account when comparison is made of the various 
superpositions of different unique atoms. (2) Because 
of overlap, especially with general maxima in the 
Patterson function, SMF will contain numbers of 
spurious peaks. This limitation can be minimized by 
reliable, complete and sharpened three-dimensional 
data. (3) I t  is of no use for crystals with only P1 
symmetry,  though it is very powerful for crystals with 
higher symmetry.  (4) I t  is less useful for non-centro- 
symmetric structures, but, nevertheless, it is still 
quite powerful in these cases. In general, the power 
of SMF for locating trial atoms is proportional to the 
number of symmetry regions in the Patterson function 
and to the number of coordinates which they specify. 

One limitation in the high order image seeking func- 
tion occurs when there are small errors in the vectors 
r~ which are chosen for superposition. We have 
successfully used .superpositions of sixteen displaced 
P ( r - r Q ,  and we expect that  even higher orders are 
feasible, depending upon the accuracy of the r~. 
Accordingly, the improved accuracy obtained when 
the ri are determined from the SMF becomes very 
important in minimizing these errors. 

Both the SMF and Sm functions can be interpreted 
as probable electron density functions which include 
false peaks and ambiguities 

SMF(r) _>_ 0(r) (17) 
and 

Sin(r) >_ o(r) .  

For difficult crystal structures it may be useful to 
include in SMF and S,n other functions which are also 
probable electron density functions, particularly 
Fourier synthesis of the electron density based upon 
calculated phases 

o~(r) ~ e ( r ) .  (18) 

The SMF and S,, functions extended by ~c may prove 
more useful than either ~oc or the simple SMF and Sin, 

SMF'(r)=M{II(r), I2(r), . . . ,  Ip(r), Qc(r)} ~-e(r) (19) 

S~n(r) = M { P ( r -  rl), P ( r -  re), . . .  , 
P ( r -  r~), SMF(r), ~( r ) )  _~ 0(r) .  (20) 

These extended functions combine the image seeking 
method with phase determination methods such as 
statistical methods for the direct determination of 
phases (Woolfson, 1961). We also believe that  these 
methods will greatly increase the power of the proce- 
dure programmed by Nordman & Nakatsu (1963), 
which depends upon a rigid group of atoms with a 
known internal geometry. 

The high speed computing aspects of the SMF 
and Sm functions are relatively simple. The whole 
asymmetric unit of P(r)  is stored in the high speed 
random access memory. Accuracy in the superposition 
of many P ( r - r ~ )  is assured by the three-dimensionM 
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l inear interpolat ion of the stored values of P ( r ) .  
For  an asymmetr ic  uni t  of P ( r )  specified a t  31 x 31 x 31 
or 16 × 31 × 61 or less points of r the entire uni t  can 
be stored one value per memory  location. Asymmetr ic  
units  specified a t  more points can be handled by  
modifying the  programs to store more t h a n  one grid 
value per memory  location. 

The computa t ion  t ime is short,  making the  calcula- 
t ion of high order Sm functions feasible. The t ime 
required on the  IBM 7090 computer  is about  one 
minute  per displacement  vector  for an asymmetr ic  
uni t  specified a t  31 ×31 ×31 points, including the  
three-dimensional  linear interpolation. The logic of 
our programs is simple enough so our present  
F O R T R A N  programs for the  IBM 7090 computer  
m a y  be readily adap ted  to any  high speed computer  
with comparable storage size. In  their present  form 
the programs have  a segment which must  be modified 
for different space groups and uni t  cell sizes. These 
programs have been used successfully by other 
laboratories. 

A P P E N D I X  

Criteria for distinguishing superposition functions 
based on correct tr ial  a toms from those based on 
incorrect trial a toms need to be discussed in more 
detail. Ul t imately ,  the  test  is whether  the resulting 
crystal  s t ructure  agrees with the  intensi ty da t a  and 
with known principles of molecular geometry.  How- 
ever, it is very  helpful to have simple and objective 
criteria t ha t  can be used to reduce the  number  of 
trial  s t ructures which must  be tested in detail. 

The height of the trial  a tom in SMF gives a first 
simple measure of its probabi l i ty  of correctness 
(peaks in the SMF t h a t  appear  to be satellite peaks 
are ignored a t  first). A suitable number  of trial 
a toms are chosen as a basis for an equal number  of 
initial superposition functions. The number  of initial 
superposition functions which it is desirable to com- 
pute  depends upon the  complexi ty of the crystal  
s t ructure  and can be es t imated from the number  of 
max ima  in SMF above a certain height. For  example, 
if the  SMF contains M unique peaks above one half 
of the  expected height for one of the AT unique heavy  
a toms in the  crystal  unit  cell, then  the average 
fract ion of correct trial a toms among the peaks in 
SMF is N/M. Then, the number  C of correct Sm 
functions in K trials is, on the average,  

(C)=Cav=KN/M (21) 

and has a s t andard  deviat ion approximate ly  given by  

a(C~v) = I/Car. (22) 

The number  of initial trials is chosen according to 
the necessary min imum number  of correct Sm func- 
tions and according to the degree of cer ta in ty  desired. 
The probabi l i ty  t h a t  the number  (Cact) of correct Sm 

functions actual ly  obtained will be greater  t han  some 
min imum number  (Cmin) depends upon the rat io 

(Cav-Cmin)/~/Cav=t (23) 

and can be es t imated from the normal  error curve. 
A few such est imates are:  

Probability that 
t Cact ~_ Cmin 
0 50% 
1 84 
2 98 

I f  we select Cmtn~-2, t = l ,  we find t h a t  Cav=4 
and t h a t  the  number  of initial tr ial  Sm functions 
should be four t imes M/N. I f  it is felt t h a t  1V/M is 
a low est imate  of the probabi l i ty  of correctness for 
the highest peaks in SMF, then the number  of initial 
Sm is decreased. On the other  hand,  if a higher degree 
of cer ta in ty  for obtaining a t  least two correct Sm is 
desired, then  the number  m a y  be increased. 

After  these initial Sm functions are computed,  
the  next  problem is to find which are correct. One 
method consists of building models from each Sm 
and then carefully comparing them and looking for 
recognizable molecular features.  However,  this is t ime 
consuming and m a y  also be misleading since even 
incorrect Sm will p robably  contain molecular f ragments  
t rans la ted  from their  correct positions. Simpler 
criteria can be used to nar row the search for the  
correct Sm functions. For  example,  a simple measure  
of the probable correctness of an Sm function is the  
general height of its maxima,  as given by  the  average 
height of the  AT or 2(/2 highest peaks*" where _N is 
the  number  of heavy  atoms. This criterion is perhaps  
not  very  sensitive to the correctness of an Sm function, 
but  it is suggestive and it is easily evaluated.  

A stronger criterion for the probable correctness 
of two Sm functions is the number  of common peaks 
between them. First ,  the  position and height of the 
highest (say Iv" to 21V) peaks in each S,, function are 
listed and then the height a t  these positions in every 
other  Sm is also listed. For  each pair  of S,, functions 
the  number  of common peaks is counted and  this 
number  is used as a measure  of reliability for t h a t  
pair. For  uni formi ty  in the counting of common 
peaks two minimum peak height limits are chosen, 
one for the higher of each pair  of peaks and another  

* A similar additional or alternative criterion is the value 
of the minimum accumulation function (Raman & Lipscomb, 
1961) MA(rl, r 2 . . . . .  rn) which, in slightly generalized form, 
is the integral of Sin(r, r 1, r 2 . . . . .  rn) over the unique region 
of r. With modern computers it is simple enough to evaluate 
the MA function for a particular choice of r 1, r 2 . . . . .  rn by 
summing the value of Sm over a three-dimensional array of 
discrete points. However, the MA function has the dis- 
advantage of including all of the false detail in the integral 
or sum. This difficulty might be lessened by including in the 
summation only values of Sm above some lower limit. Here, 
one could simply use the average height of the highest N 
or N/2 peaks. 
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for the lower. The validity of the number of common 
peaks as a criterion depends on at least two of the 
computed Sm functions being based on correct trial 
atoms. 

Generally there are ambiguities in the choice of 
coordinates for a trial atom selected from the unique 
peaks in SMF. These ambiguities must be taken into 
account when two or more Sm functions are compared. 
If the degree of the ambiguity is /-fold, that  is the 
trial atoms A1, A2, . . .  and At are equivalent in SMF 
but not in the crystal, then we denote the Sm functions 
as S,n(A1) and S~(B1), S,n(B2), . . .  and S,,,(Bz), where 
the computed Sm functions are based on the trial 
atoms A1 and B1. The functions S~(B2), S~(B3) . . . .  
and S~(Bz) are obtained from SIn(B1) by a change 
of origin and/or orientation of the axes. Detailed 
study of common peaks need only be made between 
those S~(A1) and S,,,(BI) which have peaks both at 
A1 and B~; otherwise, A1 and Bj do not simultaneously 
satisfy P(r). This principle applies also to the com- 
parison of more than two S~; that  is, peaks at 
A1, Bj, Cg, . . .  must be common to Sm(A1), S,n(Bj), 
S~(Cg),. . .  in order that  the trial atoms A1, Bj, Cg, . . .  
simultaneously satisfy P(r). 

With these three criteria, (1) the number of peaks 
common with other Sm functions, (2) the general 
height of the highest peaks, and (3) the height of the 
basis trial atom in SMF, the most reliable S~ can be 
selected objectively. The next problem is the selection 
of further trial atoms. 

Trial atoms are selected from the common maxima 
of two or more reliable S~ functions, listing and using 
the following measures of probable correctness for 
each atom: (1) its height in the several Sm functions 
in order of their decreasing reliability, (2) its height 
in SMF, (3) the reliability of the Sm based on it, if 
computed, and (4) its chemical reasonableness as 
shown by a model of the most likely trial atoms. 

A promising trial structure may be found at this 
stage which can be tested and refined by the usual 
methods of structure factor calculation, Fourier 
synthesis of the approximate electron density or 
residual electron density, and least-squares refine- 
ment. In difficult cases it is necessary to compute 
more Sm functions based upon the atoms judged 
most likely to be correct, and again apply the reliability 
criteria to all S~ functions, and subsequently to trial 
~tomio positions. Initially it ~eems best to u~c ~m 
functions based on only one unique atom in order 
to minimize the number of assumptions upon which 
each function is based. Thus, an S~ function provides 
a criterion for the probable correctness of the trial 
atom upon which it is based. When two or more 
unique atoms are known confidently, then it may be 
useful to compute higher order Sm functions with 
or without SMF included. 

Practically, these procedures are limited by the 
quality of the Patterson function which is the raw 
material for the SMF and Sm functions. While the 

aim of the procedures outlined here is to make the 
greatest use of Patterson functions with overlapping 
maxima, there is some limit as to how poor the 
resolution can be and still permit the solution of the 
structure. One indication of the probable difficulty 
is the ratio of unique peaks in SMF to the number 
of unique heavy atoms. In the i-BlsH22 study this 
ratio was about three to one, and the correct trial 
structure was found rather easily by the procedures 
outlined. However, if the ratio is much larger, perhaps 
ten to one, then these procedures may fail unless a 
better Patterson function based upon diffraction 
data obtained at higher resolution can be employed. 

Since the computation of SMF involves the division 
of the Patterson function densities by the various 
multiplicities of the symmetry interactions, it is 
advisable to include a reasonable value for the F~000 
term in the synthesis of P(r). I t  is convenient to 
reduce the origin peak in P(r) to the height of a 
general interaction between two heavy atoms. Just  
how the diffraction intensities should best be shar- 
pened for the Fourier synthesis of P(r) is uncertain, 
but good results have been obtained by using inten- 
sities modified to make their average value indepen- 
dent of sin 0/~. 
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Structure de l '~-Naphthoquinone 

PxR JAOQVES GAImTI~,I~ ~T CHRISTIAN HAVW 

Zaboratoire de Mindralogie et Cristallographie, Facultd des Sciences de Bordeaux, France 

(Refu le 8 fdvrier 1964) 

The crystal structure of a-naphthoquinone, C1002H6, has been determined and refined by an 
analysis of three-dimensional X-ray  diffraction data. The crystals are monoclinic with space 
group P21/c. The cell dimensions are: 

a=8,27__+0,02, b =7,76 ___0,02, c=  11,71 __0,02 A; f l=99 ° 30' + 2 0 ' .  

The structure consists of piles of parallel molecules; details of the molecular geometry and dimen- 
sions, and of the intermolecular separations, have been obtained. 

I n t r o d u c t i o n  

La d@termination de la s t ructure  de l ' a -naph tho-  
quinone de formule C1002H~ s ' inscrit  dans une s6rie de 
recherches sur la s t ructure  mol6culaire des vi tamines 
et ant i -vi tamines  K. Un  certain nombre  de d@riv6s 
mono et disubstitu6s de la 1,4-naphthoquinone et de 
la coumarine ont  6t6 6tudi6s ou sont en cours d'6tude. 

Une 6tude cristal lographique de la 1,4-naphtho- 
quinone faite par  Caspari (1932) a donn6 les r6sultats  
suivants  : 

Groupe de symdtrie monoclinique P21/n 

a = 8 , 2 5 ,  b=7 ,74 ,  c=13 ,50  ~k; f l --120 °. 

Donn6es  e x p e r i m e n t a l e s  

La naphthoquinone,  par  refroidissement lent d 'une  
solution benz6nique satur6e, cristallise en prismes 
monocliniques, de couleur brune,  allong@s suivant  la 
direction a. 

Nous avons d6termin6 les param@tres de maille 
suivants :  

a = 8 , 2 7 ± 0 , 0 2 ,  b = 7 , 7 6 ± 0 , 0 2 ,  c = 1 1 , 7 1 ± 0 , 0 2 / ~ ;  
f l = 9 9  ° 3 0 ' ± 2 0 ' ;  V=741  j[3. 

Densit6 calcul6e 1,417 pour 4 mol@cules 
dans la maille. 

Densit6 mesur6e 1,42. 
Groupe spatial  P21/c. 

Cette maille correspond £ celle de Caspari par  le 
changement  d 'axe  [101] ~ [100]. 

Les plans r6ciproques, pour  h va r ian t  de 0 £ 7 ont 
6t6 photographi6s successivement par  le r6t igraphe 
de De Jong  avec la radia t ion Cu Kc¢. 

Les intensit@s observ6es des 478 plans ind6pendants  
ont  6t6 mesur6es par  comparaison visuelle avec une 
6chelle d ' intensit6 et corrig@es pa r  les facteurs  de 
Lorentz et de polarisat ion (Gay, 1954). Aucune cor- 
rection d 'absorp t ion  n ' a  6t6 effectu6e, la section des 
mono-cr is taux utilis6s 6rant  de l 'ordre de 0,2 x 0,3 mm 2. 

Dans  ce t ravai l  routes les synthbses bidimension- 
nelles ont  6t6 obtenues £ l 'aide du pho tosommateur  
optique de yon Eller (1955). 

D 6 t e r m i n a t i o n  de la  s t r u c t u r e  

La s t ructure  a 6t6 r6solue par  1'6rude de la fonction 
de Pat terson.  

Tableau 1. Coordonndes atomiques et facteurs 
d' agitation thermique 

x/a y/b z/c 
C(1) 0,3436 --0,0934 0,1536 
C(2) 0.2800 - 0,2715 0,1554 
C(3) 0,1759 - 0,3325 0,0680 
C(4) 0,1316 --0,2230 --0,0327 
C(5) 0,1478 0,0555 -0,1337 
C(6) 0,2165 0,2229 -0,1417 
C(7) 0,3253 0,2845 - 0,0496 
C(8) 0,3591 0,1842 0,0520 
C(9) 0,2984 0,0173 0,0561 
C(10) 0,1935 --0,0471 --0,0395 
O(1) 0,4312 - 0,0387 0,2387 
0(4) 0,0381 -0,2808 -0,1150 

B (A 2) 
3,6 
3,8 
3,8 
3,5 
3,5 
4,4 
4,3 
3,4 
3,1 
3,3 
4,6 
4,4 


